

DELIVERING SCIENCE SUPPORTING HEALTHCARE

GP Study Webinar

Lipoprotein(a): cardiovascular risk factor and future therapeutic target

Dr Ben Jones, Lipid Clinics, St Mary's and Hammersmith

Hospitals

Consultant in Metabolic Medicine, North West London Pathology

March 16th 2022

Learning objectives

- What is lipoprotein(a)?
- What causes raised lipoprotein(a)?
- When is it useful to measure it?
- What do I do if it's raised?
- What are the future prospects for lipoprotein(a) treatment?

Take home messages

- Lp(a) is a pro-atherogenic and pro-thrombotic lipoprotein that increases CV risk independently of traditional risk factors
- Lp(a) has a strong genetic inheritance pattern
- Current management of Lp(a) is centred on intensive manage other modifiable CV risk factors (and sometimes aspirin)
- New Lp(a)-lowering treatments are on the horizon...

Learning objectives

- What is lipoprotein(a)?
- What causes raised lipoprotein(a)?
- When is it useful to measure it?
- What do I do if it's raised?
- What are the future prospects for lipoprotein(a) treatment?

Contents lists available at ScienceDirect

Atherosclerosis

journal homepage: www.elsevier.com/locate/atherosclerosis

atherosclerosi

EAS 🅘 👝

Review article

HEART UK consensus statement on Lipoprotein(a): A call to action

Jaimini Cegla^{a,*}, R.Dermot G. Neely^b, Michael France^c, Gordon Ferns^d, Chris D. Byrne^{e,f}, Julian Halcox⁸, Dev Datta^h, Nigel Cappsⁱ, Carol Shoulders^j, Nadeem Qureshi^k, Alan Rees¹, Linda Main¹, Robert Cramb^m, Adie Viljoenⁿ, Jules Payne¹, Handrean Soran^o, for the HEART UK Medical, Scientific and Research Committee

^a Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK

- ^b Department of Blood Sciences and NIHR MedTech and IVD Centre, Newcastle Upon Tyne Hospitals, Newcastle Upon Tyne, UK
- ^c Department of Clinical Biochemistry, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- ^d Department of Medical Education, Brighton and Sussex Medical School, Brighton, UK
- ^e Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK
- ^f Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- 8 Swansea University (Prifysgol Abertawe), College of Medicine, Swansea, UK
- ^hLipid Unit, University Hospital Llandough, Cardiff, UK
- ¹Department of Clinical Biochemistry, The Shrewsbury and Telford Hospital NHS Trust, Telford, UK
- ¹ William Harvey Research Institute, Queen Mary University of London, London, UK
- k Division of Primary Care, University of Nottingham, Nottingham, UK
- ¹HEART UK, Maidenhead, UK
- ^m University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- ⁿLister Hospital, Stevenage, UK
- ^o Department of Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK

Home > Cholesterol > Genetic conditions

High lipoprotein (a)

Join our free webinar: Thursday 24th March 2022

DONATE

Q

- > High HDL Cholesterol
- > Metabolic syndrome
- > Polygenic hypercholesterolaemia
- > Rarer genetic conditions
- > Secondary hyperlipidaemia
- > Severe polygenic hypercholesterolaemia
- > Sitosterolaemia
- Familial combined hyperlipidaemia (FCH)
- > Familial hypertriglyceridaemia
- > Low HDL cholesterol

HEART UK website

What is lipoprotein(a)?

Lp(a) structure – "LDL + plasminogen"

ApoB100 part resembles LDL - **atherogenic** Kringle IV repeats resemble plasminogen - **prothrombotic**

Lp(a) Pathophysiology

Pro-inflammatory

NH2

COOF

- \uparrow oxidised phospholipids
- ↑ monocyte trafficking
- \uparrow monocyte cytokine release

Proatherogenic

↑ arterial infiltration
↑ SMC proliferation

- ↑ foam cell formation
- \uparrow necrotic core formation

Prothrombotic

- \downarrow plasminogen activation
- \downarrow fibrin degradation
- \uparrow platelet aggregation

Lp(a) population distribution

Note that Lp(a) measurement units have changed!

Kamstrup JAMA 2009

Lp(a) and CV risk – epidemiological and genetic evidence

Meta-analysis

North West London Pathology

Lp(a) and CV risk – epidemiological and genetic evidence

Kamstrup JAMA 2009

Lp(a) and graded risk

32-90 18-40	c= coth	
	67-80 ^m	Minor
90-200 40-90	80-95 th	Moderate
200-400 90-180	95-99.8 th	High
>400 >180	>99.8 th	Very High

*Percentile cutpoints in nmol/l and mg/dl for Lp(a) values derived from 13900 participants (Nov. 2015 to June 2017) in the on-going Copenhagen General Population Study. Measurements were performed with the Roche assay on a Cobas platform (unpublished data, courtesy of P. Kamstrup and B. Nordestgaard).

Lp(a) is also a risk factor for calcific aortic valve stenosis

North West London Pathology

Take home messages

- Lp(a) is a pro-atherogenic and pro-thrombotic lipoprotein that increases CV risk independently of traditional risk factors
- Lp(a) has a strong genetic inheritance pattern
- Current management of Lp(a) is centred on intensive manage other modifiable CV risk factors (and sometimes aspirin)
- New Lp(a)-lowering treatments are on the horizon...

What causes raised lp(a) - mainly genetics

LPA genetic variation controls Lp(a) levels

NHS

North West

London Pathology

LPA genetic variation controls Lp(a) levels

North West

London Pathology

Lower KIV-2 repeat number, higher Lp(a) particle number

Combined influence of both parental alleles: co-dominant inheritance pattern

North West London Pathology

Schmidt JLR 2016

Measurement issues

Lower KIV-2 repeat number, higher Lp(a) particle number

However, the assay used at NWLP is considered *isoforminsensitive* and provides a true estimate of "concentration" or "particle number"

Larger isoforms could cause *overestimation* of Lp(a) concentration

Is there an impact of genetic ancestry, ethnicity, or race?

North West London Pathology

Α

Lp(a) association with CVD is less strong in Black or African ancestry people than in people of South Asian, East Asian or European ancestry

Secondary causes of (or contributors to) raised Lp(a)

- 70-90% genetically determined
- Menopause (moderate effect)
- Kidney disease including nephrotic syndrome
- Uncontrolled hypothyroidism
 - Not sub-clinical hypothyroidism

Do drugs affect Lp(a) levels?

- Statins and ezetimibe no! (not much anyway possible slight increase with statins?)
- Anti-PCSK9 drugs monoclonal antibodies (Evolocumab, Alirocumab) and Inclisiran – 15-20% reduction – but not licensed for this specifically
- Oestrogen replacement therapy moderate effect
- Thyroxine

Take home messages

- Lp(a) is a pro-atherogenic and pro-thrombotic lipoprotein that increases CV risk independently of traditional risk factors
- Lp(a) has a strong genetic inheritance pattern
- Current management of Lp(a) is centred on intensive manage other modifiable CV risk factors (and sometimes aspirin)
- New Lp(a)-lowering treatments are on the horizon...

When should Lp(a) be measured?

HEART UK recommendations on when to measure:

Serum lipoprotein(a) levels should be measured in those with:

1) a personal or family history of premature atherosclerotic cardiovascular disease (<60 years of age)

2) first degree relatives with raised Lp(a) levels (>200 nmol/l)

3) familial hypercholesterolaemia (FH) and other genetic dyslipidaemias

4) calcific aortic valve stenosis

5) a borderline increased (but <15%) 10-year risk of a cardiovascular event as per NICE CG181 and Joint British Societies' guidelines.

What do I do if lp(a) is raised?

Treatment of Lp(a)

Conventional

- Niacin
- Reducing residual risk
- PCSK9i
- Aspirin

Novel

- Mipomersen
- Anecetrapib
- Antisense oligos

Treatment of Lp(a)

Conventional

- Niacin
- Reducing residual risk
- PCSK9i
- Aspirin

Novel

- Mipomersen
- Anecetrapio
- Antisense oligos

High intensity statin reduces CVD events in people with low and high Lp(a)

Primary Endpoint + Total Mortality

JUPITER, Rosuva 40 Khera Circulation 2013

Aspirin reduces CVD risk in women with genetically determine high Lp(a)

A) Myocardial infarction, ischemic stroke cardiovascular death

Chasman Atherosclerosis 2009

PCSK9 inhibition

- Anti-PCSK9 monoclonal antibodies (Evolocumab, Alirocumab) and Inclisiran reduce Lp(a) by 15-20%
- PCSK9 therapy reduces CVD risk in people with high or low Lp(a)

O'Donoghue Circulation 2019

Antisense Oligonucleotides

Change from Baseline to PAT in Lipoprotein(a) Level

The Phase 3 HORIZON trial is investigating anti-apo(a) antisense oligonucleotides on cardiovascular outcomes. Expected to complete in 2024

Should all patients with high Lp(a) be referred to local lipid London Pathology clinic?

(If you measure it)

Lp(a) level nmol/lª	Lp(a) level approx. in mg/dl ^b	Percentile of general population ¹²	Impact on CV risk
32-90	18-40	67-80 th	Minor
90-200	40-90	80-95 th	Moderate
200-400	90-180	95-99.8 th	High
>400	>180	>99.8 th	Very High

• At present, specific Lp(a)-lowering treatments are not available

Should all patients with high Lp(a) be referred to local lipid clinic?

Serum lipoprotein(a) levels should be measured in those with:

1) a personal or family history of premature atherosclerotic cardiovascular disease (<60 years of age)

2) first degree relatives with raised Lp(a) levels (>200 nmol/l)

3) familial hypercholesterolaemia (FH) and other genetic dyslipidaemias

4) calcific aortic valve stenosis

5) a borderline increased (but <15%) 10-year risk of a cardiovascular event as per NICE CG181 and Joint British Societies' guidelines.

Should all patients with high Lp(a) be referred to local lipid clinic?

 In my view, if Lp(a) measured in primary care in patient categories listed above, and initial management of modifiable risk factors has been initiated, it would be reasonable to refer patients with at least moderately elevated Lp(a)

Lp(a) level nmol/lª	Lp(a) level approx. in mg/dl ^b	Percentile of general population ¹²	Impact on CV risk
32-90	18-40	67-80 th	Minor
90-200	40-90	80-95 th	Moderate
200-400	90-180	95-99.8 th	High
>400	>180	>99.8 th	Very High

Take home messages

- Lp(a) is a pro-atherogenic and pro-thrombotic lipoprotein that increases CV risk independently of traditional risk factors
- Lp(a) has a strong genetic inheritance pattern
- Current management of Lp(a) is centred on intensive manage other modifiable CV risk factors (and sometimes aspirin)
- New Lp(a)-lowering treatments are on the horizon...

Take home messages

- Lp(a) is a pro-atherogenic and pro-thrombotic lipoprotein that increases CV risk independently of traditional risk factors
- Lp(a) has a strong genetic inheritance pattern
- Current management of Lp(a) is centred on intensive manage other modifiable CV risk factors (and sometimes aspirin)
- New Lp(a)-lowering treatments are on the horizon...

Acknowledgements

- Jaimini Cegla and Lipid Clinic colleagues
- NWLP scientific colleagues

Questions?